
Using Python for Epics Channel Access:
Library and Applications

Matthew Newville

Consortium for Advanced Radiation Sciences
University of Chicago

September 15, 2011

http://github.com/pyepics/

M Newville CARS, Univ Chicago 15-Sep-2011

Why Python?

For General Programming:

Clean Syntax Easy to learn, remember, and read

High Level No pointers, dynamic memory, automatic memory

Cross Platform code portable to Unix, Windows, Mac.

Object Oriented full object model, name spaces.

Easily Extensible with C, C++, Fortran, . . .

Many Libraries GUIs, Databases, Web, Image Processing, . . .

For Scientific Applications:

numpy Fast arrays.

matplotlib Excellent Plotting library

scipy Numerical Algorithms (FFT, lapack, fitting, . . .)

sage Symbolic math (ala Maple, Mathematica)

. new scientific packages all the time

Free Python and all these tools are Free (BSD, LGPL, GPL).

Motivation and History M Newville CARS, Univ Chicago 15-Sep-2011

PyEpics: Epics Channel Access for Python

PyEpics contains 3 levels of access to CA:

Low level: ca and dbr modules. C-like API, complete mapping of CA
library.

High level: PV object. Built on ca module.

Procedural: caget(), caput(), cainfo(), camonitor(), Built on PV.

Other objects (Alarm, Devices, GUI controls) are built on top of PV.

Procedural Interfaces: similar to command-line tools or EZCA library.

caget() / caput()

>>> from epics import caget, caput

>>> m1 = caget(’XXX:m1.VAL’)

>>> print m1

-1.2001

>>> caput(’XXX:m1.VAL’, 0)

>>> caput(’XXX:m1.VAL’, 2.30, wait=True)

>>> print caget(’XXX:m1.DIR’)

1

>>> print caget(’XXX:m1.DIR’, as_string=True)

’Pos’

caput(pvname, wait=True) waits until
processing completes.

caget(pvname, as string=True)

returns String Representation of value
(Enum State Name, formatted doubles)

Does 90% of what you need.
Probably too easy . . .

Overview, Simple Interface M Newville CARS, Univ Chicago 15-Sep-2011

cainfo() and camonitor()

cainfo() shows many informational
fields for a PV:

cainfo()

>>> cainfo(’XXX.m1.VAL’)

== XXX:m1.VAL (double) ==

value = 2.3

char_value = 2.3000

count = 1

units = mm

precision = 4

host = xxx.aps.anl.gov:5064

access = read/write

status = 1

severity = 0

timestamp = 1265996455.417 (2010-Feb-12 11:40:55.417)

upper_ctrl_limit = 200.0

lower_ctrl_limit = -200.0

upper_disp_limit = 200.0

lower_disp_limit = -200.0

upper_alarm_limit = 0.0

lower_alarm_limit = 0.0

upper_warning_limit = 0.0

lower_warning = 0.0

PV is monitored internally

no user callbacks defined.

=============================

camonitor() monitors a PV, writing out
a message for every value change, until
camonitor clear() is called:

camonitor()

>>> camonitor(’XXX:DMM1Ch2_calc.VAL’)

XXX:DMM1Ch2_calc.VAL 2010-02-12 12:12:59.502945 -183.9741

XXX:DMM1Ch2_calc.VAL 2010-02-12 12:13:00.500758 -183.8320

XXX:DMM1Ch2_calc.VAL 2010-02-12 12:13:01.501570 -183.9309

XXX:DMM1Ch2_calc.VAL 2010-02-12 12:13:02.502382 -183.9285

>>> camonitor_clear(’XXX:DMM1Ch2_calc.VAL’)

You can supply your own callback to
camonitor() to do something other than
write out the new value.

The epics module maintains a global cache of PVs when using the ca***() functions:
connections to underlying PVs are maintained for the session.

Overview, Simple Interface M Newville CARS, Univ Chicago 15-Sep-2011

PV objects: Easy to use, full-featured.

PV objects are good way to interact with Channel Access Process Variables:

Using PV objects

>>> from epics import PV

>>> pv1 = PV(’XXX:m1.VAL’)

>>> print pv1.count, pv1.type

(1, ’double’)

>>> print pv1.get()

-2.3456700000000001

>>> pv1.put(3.0)

>>> pv1.value = 3.0 # = pv1.put(3.0)

>>> pv1.value # = pv1.get()

3.0

>>> print pv.get(as_string=True)

’3.0000’

>>> # user defined callback

>>> def onChanges(pvname=None, value=None, **kws):

... fmt = ’New Value for %s value=%s\n’

... print fmt % (pvname, str(value))

>>> # subscribe for changes

>>> pv1.add_callback(onChanges)

>>> while True:

... time.sleep(0.001)

Automatic connection management.

Attributes for many properties (count,
type, host,upper crtl limit, . . .)

Can use get() / put() methods

. . . or PV.value attribute.

as string uses ENUM labels or
precision for doubles.

put() can wait for completion or run
user callback when complete.

connection callbacks.

can have multiple event callbacks.

PV: object-oriented interface M Newville CARS, Univ Chicago 15-Sep-2011

User-Supplied Callbacks for PV Changes

Callback: User-defined function called when a PV changes.
The function must have a pre-defined call signature, using keyword arguments:

Simple Callback

import epics

import time

def onChanges(pvname=None, value=None,

char_value=None, **kw):

print ’PV Changed! ’, pvname, \

char_value, time.ctime()

mypv = epics.PV(pvname)

Add a callback

mypv.add_callback(onChanges)

print ’Now watch for changes for a minute’

t0 = time.time()

while time.time() - t0 < 60.0:

time.sleep(1.e-3)

print ’Done.’

pvname name of PV

value new value

char value String representation of value

count element count

ftype field type (DBR integer)

type python data type

status ca status (1 == OK)

precision PV precision

. . .

Many CTRL values (limits, units, . . .) passed in.

Use **kws recommended!

Callbacks for the ca module have similar signatures (no CTRL parameters).

put() and connection callbacks have similar signatures.

PV: object-oriented interface M Newville CARS, Univ Chicago 15-Sep-2011

PVs for Waveform / Array Data

Epics Waveform array data is very important for experimental data:

double waveform

>>> p1vals = numpy.linspace(3, 4, 101)

>>> scan_p1 = PV(’XXX:scan1.P1PA’)

>>> scan_p1.put(p1vals)

>>> print scan_p1.get()[:101]

[3. , 3.01, 3.02, ..., 3.99, 3.99, 4.]

character waveform

>>> folder = PV(’XXX:directory’)

>>> print folder

<PV ’XXX:directory’, count=21/128,

type=char, access=read/write>

>>> folder.get()

array([84, 58, 92, 120, 97, 115, 95, 117, 115,

101, 114, 92, 77, 97, 114, 99, 104, 50, 48,

49, 48])

>>> folder.get(as_string=True)

’T:\xas user\March2010’

>>> folder.put(’T:\xas user\April2010’)

For recent versions of Epics base,
sub-arrays are supported.

Character waveforms can be longer than
40 characters – useful for long strings.

Putting a Python string to a character
waveform will convert to a list of bytes.

PV: object-oriented interface M Newville CARS, Univ Chicago 15-Sep-2011

PyEpics History and Motivation

There have been several wrappings of Epics CA over the years.

Sept 2009: a tech-talk discussion asked if these could be combined.

My own was difficult to maintain (especially Windows), so I rewrote from scratch.

Goals for Python/Channel Access interface:

complete(ish) access to low-level CA.

high-level PV object built upon this foundation.

support for multi-threading.

preemptive callbacks: PV connection, event, put.

documentation, unit-testing, maintenance.

easy installation – including Windows.

Python 2 and Python 3 support.

Key Design Decision: Use Python’s ctypes module.

PyEpics wraps the CA library, a C library that preemptively calls
user-supplied Python code and accesses complex C data structures.

Zero lines of C

PV: object-oriented interface M Newville CARS, Univ Chicago 15-Sep-2011

Using ctypes

The ctypes library is a foreign function interface, giving access to C data types and
functions in dynamic libraries at Python run-time.

ctypes for libca.so (low-level CA)

import ctypes

libca = ctypes.cdll.LoadLibrary(’libca.so’)

libca.ca context create(1)

chid = ctypes.c long()

libca.ca create channel(’MyPV’, 0,0,0, ctypes.byref(chid))

libca.ca pend event.argtypes = [ctypes.c_double]

libca.ca pend event(1.0e-3)

print ’Connected: ’, libca.ca state(chid) == 2 # (CS CONN)

print ’Host Name: ’, libca.ca host name(chid)

print ’Field Type: ’, libca.ca field type(chid)

print ’Element Count: ’, libca.ca element count(chid)

Ctypes gives a “just like C”
interface to a dynamic library.

Load library

Create Channel ID

Use Channel ID with library
functions, being careful about
data types for arguments.

Using ctypes makes several goals easy:

1 Complete CA interface easy to implement, debug.

2 Install on all systems: python setup.py install.

3 Best thread support possible, with Python Global Interpreter Lock.

4 Supports Python 2 and Python 3 with little code change.

The ctypes module M Newville CARS, Univ Chicago 15-Sep-2011

ca module: low-level, but still Python

Wrapping CA with ctypes:

The ca interface

from epics import ca

chid = ca.create_channel(’XXX:m1.VAL’)

count = ca.element_count(chid)

ftype = ca.field_type(chid)

value = ca.get()

print "Channel ", chid, value, count, ftype

put value

ca.put(chid, 1.0)

ca.put(chid, 0.0, wait=True)

user defined callback

def onChanges(pvname=None, value=None, **kw):

fmt = ’New Value for %s value=%s\n’

print fmt % (pvname, str(value))

subscribe for changes

eventID = ca.create_subscription(chid,

userfcn=onChanges)

while True:

time.sleep(0.001)

Enhancements for Python:

Python namespaces, exceptions used.
I ca fcn → ca.fcn
I DBR XXXX → dbr.XXXX
I SEVCHK → Python exceptions

OK to forget many tedious chores:
I initialize CA.
I create a context (unless explicitly

using Python threads).
I wait for connections.
I clean up at exit.

No need to worry about data types.

Python decorators are used to lightly wrap CA functions so that:

CA is initialized, finalized.

Channel IDs are valid, and connected before being used.

CA module M Newville CARS, Univ Chicago 15-Sep-2011

CA interface design choices

Essentially all CA functions are defined to work “Just like C”. A few details:

Preemptive Callbacks are used by default. OK to forget ca.pend event(). Can be turned
off, but only before CA is initialized.

DBR CTRL and DBR TIME data types supported, but not DBR STS or DBR GR.

Array data will be converted to numpy arrays if possible.

Some functions (ca set puser(), ca add exception event()) are not needed.

EPICS CA MAX ARRAY BYTES set to 16777216 (16Mb) unless already set.

Connection and Event callbacks are (almost) always used internally. User-defined callback
functions are called by the internal callback.

Event Callbacks are used internally except for large arrays, as defined by
ca.AUTOMONITOR LENGTH (default = 16K).

Event subscriptions use mask = (EVENT | LOG | ALARM) by default.

CA module M Newville CARS, Univ Chicago 15-Sep-2011

Devices, GUI components, and Applications

Devices M Newville CARS, Univ Chicago 15-Sep-2011

Devices: collections of PVs

A PyEpics Device is a collection of PVs, usually sharing a Prefix.
Similar to an Epics Record, but relying on PV names, not Record definition.

Epics Analog Input as Python epics.Device

import epics

class ai(epics.Device):

"Simple analog input device"

_fields = (’VAL’, ’EGU’, ’HOPR’, ’LOPR’, ’PREC’,

’NAME’, ’DESC’, ’DTYP’, ’INP’, ’LINR’, ’RVAL’,

’ROFF’, ’EGUF’, ’EGUL’, ’AOFF’, ’ASLO’, ’ESLO’,

’EOFF’, ’SMOO’, ’HIHI’, ’LOLO’, ’HIGH’, ’LOW’,

’HHSV’, ’LLSV’, ’HSV’, ’LSV’, ’HYST’)

def __init__(self, prefix, delim=’.’):

epics.Device.__init__(self, prefix, delim=delim,

self._fields)

Using an ai device

>>> from epics.devices import ai

>>> Pump1 = ai(’XXX:ip2:PRES’)

>>> print "%s = %s %s" % (Pump1.DESC,

Pump1.get(’VAL’,as_string=True),

Pump1.EGU)

Ion pump 1 Pressure = 4.1e-07 Torr

>>> print Pump1.get(’DTYP’, as_string=True)

asyn MPC

>>> Pump1.PV(’VAL’) # Get underlying PV

<PV ’XXX:ip1:PRES.VAL’, count=1, type=double, access=read/write>

A Device maps a set of PV
“fields” (name “suffixes”) to
object attributes, holding all the
associated PVs.

Can save / restore full state.

Can use get()/put() methods or
attribute names on any of the
defined fields.

Devices M Newville CARS, Univ Chicago 15-Sep-2011

Extending PyEpics Devices

And, of course, a Device can have methods added:

Scaler device

import epics

class Scaler(epics.Device):

"SynApps Scaler Record"

...

def OneShotMode(self):

"set to one shot mode"

self.CONT = 0

def CountTime(self, ctime):

"set count time"

self.TP = ctime

...

Add Methods to a Device to turn it into a
high-level Objects.

Can also include complex functionality –
dynamically, and from client (beamline).

Long calculations, database lookups, etc.

Using a Scaler:

s1 = Scaler(’XXX:scaler1’)

s1.setCalc(2, ’(B-2000*A/10000000.)’)

s1.enableCalcs()

s1.OneShotMode()

s1.Count(t=5.0)

print ’Names: ’, s1.getNames()

print ’Raw values: ’, s1.Read(use_calcs=False)

print ’Calc values: ’, s1.Read(use_calcs=True)

Simple Example: Read Ion Chamber cur-
rent, amplifier settings, x-ray energy, com-
pute photon flux, post to a PV.

Needs table of coefficients (∼16kBytes of
data), but then ∼100 lines of Python.

Devices M Newville CARS, Univ Chicago 15-Sep-2011

Motor and other included Devices

A Motor Device has ∼100 fields, and several methods to move motors in User, Dial, or
Raw units, check limits, etc.

Using a Motor

>>> from epics import Motor

>>> m = Motor(’XXX:m1’)

>>> print ’Motor: ’, m1.DESC , ’ Currently at ’, m1.RBV

>>> m1.tweak_val = 0.10 # or m1.TWV = 0.10

>>> m1.move(0.0, dial=True, wait=True)

>>> for i in range(10):

>>> m1.tweak(dir=’forward’, wait=True)

>>> print ’Motor: ’, m1.DESC , ’ at ’, m1.RBV

>>> print m.drive, m.description, m.slew_speed

1.030 Fine X 5.0

>>> print m.get(’device_type’, as_string=True)

’asynMotor’

Motor features:

get() and put() methods for all
attributes

check limits() method.

tweak() and move() methods.

Can use Field suffix (.VELO,
.MRES) or English description
(slew speed, resolution).

Other devices included in the main distribution:
ao, ai, bi, bo,transform, scaler, struck (for multi-channel scaler), mca.

Devices M Newville CARS, Univ Chicago 15-Sep-2011

Alarms: react to PV values

An alarm defines user-supplied code to run when a PV’s value changes to some
condition. Examples might be:

send email, or some other alert message

turn off some system (non-safety-critical, please!)

Epics Alarm

from epics import Alarm, poll

def alertMe(pvname=None, char value=None, **kw):

print "Soup is on! %s = %s" % (pvname, char_value)

my_alarm = Alarm(pvname = ’WaterTemperature.VAL’,

comparison = ’>’,

callback = alertMe,

trip point = 100.0,

alert delay = 600)

while True:

poll()

When a PV’s value matches the
comparison with the trip point,
the supplied callback is run.
A delay is used to prevent multi-
ple calls for values that “bounce
around”.

Alarms M Newville CARS, Univ Chicago 15-Sep-2011

Epics Data Archiver – Epics+Python+MySQL+Apache

Main features:

Web interface to current
PV values.

& 5000 PVs monitored

Data archived to MySQL
tables.

templates for status web
pages

plots of historical data

web-definable email alerts

PV values displayed as html links to Plot of Data

Web-based Data Archiver M Newville CARS, Univ Chicago 15-Sep-2011

Epics Archiver: Plotting Historical Data

Plots:

default to past day

using Gnuplot (currently)

Plot “From now” or with
“Date Range”

Plot up to 2 PVs

“Related PVs” list for
common pair plots

pop-up javascript Calendar
for Date Range

String labels for Enum PVs

Web-based Data Archiver M Newville CARS, Univ Chicago 15-Sep-2011

GUI Controls with wxPython

Many PV types (Double, Float, String, Enum) have wxPython widgets, which
automatically tie to the PV.

Sample wx widget Code

from epics import PV

from epics.wx import wxlib

txt wid = wxlib.pvText(Parent, pv=PV(’SomePV’),

size=(100,-1))

txtCtrl wid = wxlib.pvTextCtrl(Parent, pv=PV(’SomePV’))

dropdown wid = pvEnumChoice(Parent, pv=PV(’EnumPV.VAL’))

buttons wid = pvEnumButtons(Parent, pv=PV(’EnumPV.VAL’),

orientation=wx.HORIZONTAL)

flt wid = wxlib.pvFloatCtrl(Parent, size=(100, -1),

precision=4)

flt wid.set_pv(PV(’XXX.VAL’))

pvText read-only text for Strings

pvTextCtrl editable text for Strings

pvEnumChoice Drop-Down list for
ENUM states.

pvEnumButtons Button sets for
ENUM states.

pvAlarm Pop-up message window.

pvFloatCtrl editable text for Floats,
only valid numbers that obey limits.

Others: Bitmap, Checkboxes,
Buttons, Shapes, etc

Mixin classes help extending other widgets (Many from Angus Gratton, ANU).

Function Decorators help write code that is safe against mixing GUI and CA threads.

wxPython GUI Controls M Newville CARS, Univ Chicago 15-Sep-2011

Some Epics wxPython Apps:

Simple Area Detector Display:

A 1360× 1024 RGB image (4Mb) from Prosilica GigE camera.

Not super-fast: Can display at a few Hz. Can display a selected ROI at a much faster

rate. wxPython GUI Controls M Newville CARS, Univ Chicago 15-Sep-2011

wx Motor Controls

MEDM-like Motor Display, except
much easier to use.

Entry Values can only be valid number. Values
outside soft limits are highlighted.

Tweak Values are generated from precision and
range.

Cursor Focus is more modern than Motif.

More Button leads to Detail Panel . . .

wxPython GUI Controls M Newville CARS, Univ Chicago 15-Sep-2011

Custom Application: Sample Stage

A custom GUI for controlling a six-motor Sample Stage at GSECARS:

Named Positions Positions can be saved by named and restored.

Sample Image (JPEG) captured at each saved position.

Simple Configuration with Windows-style .INI file.

Useful for my station, but definitely application specific.
wxPython Applications M Newville CARS, Univ Chicago 15-Sep-2011

Basic Epics GUIs are not good enough

Besides being ugly and hard-to-use, MEDM screens can not save state
information, and do not think about multiple PVs as a single item.

Epics Instruments: SQLite M Newville CARS, Univ Chicago 15-Sep-2011

Epics Instruments: Saving Positions for Sets of PVs

Epics Instruments is a GUI application that lets any user:

Organize PVs into Instruments: a named collection of PVs

Manage Instruments with “modern” tab interface.

Save Positions for any Instrument by name.

Restore Positions for any Instrument by name.

Remember Settings all definitions fit into a single file that can be loaded later.

Multiple Users can be using multiple instrument files at any one time.

Magic ingredient: SQLite – relational database in a single file.

Epics Instruments: SQLite M Newville CARS, Univ Chicago 15-Sep-2011

Epics Instruments: More details

Save / restore settings can also include regular (non-motor) PVs.

Typing a name in the box will save the current position, and add it to the list of positions.

At startup, any recently used database files can be selected.
Epics Instruments: SQLite M Newville CARS, Univ Chicago 15-Sep-2011

Epics Instruments: A few more screenshots

On “Go To”, settings can be compared with
current values, and selectively restored.

Server Mode: An application can listen to a
simple Epics Record.

This allows other processes (IDL, Spec, . . .)
to restore instruments to named positions by
writing to a couple PVs.

Edit screen to set PVs that
make up and Instrument.

Suggestions Welcome! http://github.com/pyepics/epicsapps

Epics Instruments: SQLite M Newville CARS, Univ Chicago 15-Sep-2011

PV StripChart Application

Live Plots of Time-Dependent PVs:

Interactive Graphics,
Zooming.

Set Time Range, Y-range

Set log plot

Save Plot to PNG.

Data can be saved to
ASCII files.

Epics PV Stripchart M Newville CARS, Univ Chicago 15-Sep-2011

More PV StripChart Views

Simple plot configuration:

trace colors, symbols, line
widths.

titles, axes labels (LATEX for
math/Greek characters!)

chart legend

High Quality output PNG:

Ctrl-C for Copy-to-Clipboard

Ctrl-P to Print

Windows, Mac OS X, Linux.

http://github.com/pyepics/epicsapps

Epics PV Stripchart M Newville CARS, Univ Chicago 15-Sep-2011

PyEpics: Epics Channel Access for Python

near complete interface to CA, threads, preemptive callbacks.

tested: linux-x86, linux-x86 64, darwin-x86, win32-x86 (base 3.14.12.1)
with Python 2.5, 2.6, 2.7, 3.1.

documented and some unit-testing (∼70% coverage of core).

easy installation and deployment.

high-level PV class, Devices.

GUI support (wxPython only so far).

some general-purpose applications begun.

http://github.com/pyepics

Acknowledgments: co-developer: Angus Gratton, ANU.

Suggestions, bug reports and fixes from Michael Abbott, Marco Cam-
marata, Craig Haskins, Pete Jemian, Andrew Johnson, Janko Kolar,
Irina Kosheleva, Tim Mooney, Eric Norum, Mark Rivers, Friedrich
Schotte, Mark Vigder, Steve Wasserman, and Glen Wright.

Conclusions M Newville CARS, Univ Chicago 15-Sep-2011

	Motivation and History
	Why Python?

	Overview, Simple Interface
	PyEpics Overview

	PV: object-oriented interface
	The ctypes module
	CA module
	Devices
	Alarms
	Web-based Data Archiver
	Epics Data Archiver -- Epics+Python+MySQL+Apache
	Epics Archiver: Plotting Historical Data

	wxPython GUI Controls
	wxPython Applications
	Epics Instruments: SQLite
	Epics PV Stripchart
	Conclusions

